Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations

نویسندگان

  • Wei-Kuo Tao
  • Xiaowen Li
  • Alexander Khain
  • Toshihisa Matsui
  • Stephen Lang
  • Joanne Simpson
چکیده

[1] A two-dimensional cloud-resolving model with detailed spectral bin microphysics is used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: south Florida, Oklahoma, and the central Pacific. A pair of model simulations, one with an idealized low cloud condensation nuclei (CCN) (clean) and one with an idealized high CCN (dirty environment), is conducted for each case. In all three cases, rain reaches the ground earlier for the low-CCN case. Rain suppression is also evident in all three cases with high CCN. However, this suppression only occurs during the early stages of the simulations. During the mature stages of the simulations the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case to almost no effect in the Florida case to rain enhancement in the Pacific case. The model results suggest that evaporative cooling in the lower troposphere is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions with the low-level wind shear. Consequently, precipitation processes can be more vigorous. For example, the evaporative cooling is more than two times stronger in the lower troposphere with high CCN for the Pacific case. Sensitivity tests also suggest that ice processes are crucial for suppressing precipitation in the Oklahoma case with high CCN. A comparison and review of other modeling studies are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microphysical Processes Evident in Aerosol Forcing of Tropical Deep Convective Clouds

This study investigates the effects of aerosols on tropical deep convective clouds (DCCs). A series of largescale, two-dimensional cloud-resolving model simulations was completed, differing only in the concentration of aerosols available to act as cloud condensation nuclei (CCN). Polluted simulations contained more DCCs, wider storms, higher cloud tops, and more convective precipitation domainw...

متن کامل

Intensification of Pacific storm track linked to Asian pollution.

Indirect radiative forcing of atmospheric aerosols by modification of cloud processes poses the largest uncertainty in climate prediction. We show here a trend of increasing deep convective clouds over the Pacific Ocean in winter from long-term satellite cloud measurements (1984-2005). Simulations with a cloud-resolving weather research and forecast model reveal that the increased deep convecti...

متن کامل

Impact of Aerosols on Convective Clouds and Precipitation

[1] Aerosols are a critical factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosol effects on clouds could further extend to precipitation, both through the formation of cloud particles and by exerting persistent radiati...

متن کامل

Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting ...

متن کامل

Cold Pool and Precipitation Responses to Aerosol Loading: Modulation by Dry Layers

The relative sensitivity of midlatitude deep convective precipitation to aerosols and midlevel dry layers has been investigated in this study using high-resolution cloud-resolving model simulations. Nine simulations, including combinations of three moisture profiles and three aerosol number concentration profiles, were performed. Because of the veering wind profile of the initial sounding, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007